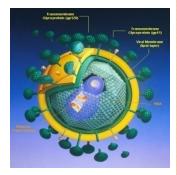
CHEMICALS TARGETING AN HIV-1 NEF/HOST CELL KINASE COMPLEX AS NOVEL ANTI-RETROVIRAL COMPOUNDS

Damilola Adepegba, University of Maryland Eastern Shore Mentor: Billy Day, Ph.D. Post Doc: Vasilly Korotchenko, Ph.D. University of Pittsburgh

HIV-AIDS

- HIV-Human Immunodeficiency Virus
- AIDS- Acquired Immune Deficiency Syndrome (NOW A PANDEMIC)
- Mechanism- T-cell, Macrophages, Dendritic cells, etc.
- 33.2 million cases in 2007
- 2.1 million deaths (330,000) annually
- US Center for Disease Control and Prevention.

ACCESSORY PROTEIN

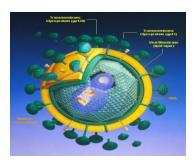

• Nef

- Nef is an HIV capsid and RNA-encoded protein essential in the pathogenesis of AIDS; it is a good, new target for anti-HIV drug discovery.
- Nef interacts with Src family kinases, including Hck, altering their sites and regulation of signal transduction.
- These Nef-mediated interactions optimize viral replication and contribute to the immune cell invasion, as well as survival of infected cells.

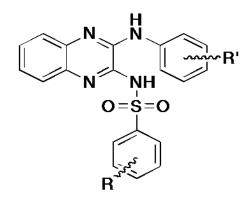
HIGH-THROUGHPUT SCREENING ASSAY

- Inhibitors of Nef in a complex with one of its host cell binding partners.
- 10,000 discrete chemical compounds were screened and two classes of inhibitors for the protein-protein interaction were identified.
- Identified these two substructures as a valuable probes of HIV Nef function and as potential pharmacophores for future AIDS drug discovery and development.

MECHANISM



- Nef binds to the Src 3 homology 3 (SH3) domains of the Src family members (Fyn, Hck, Lyn, Kyn, and c-Src).
- Growing evidence shows that Nef:SFK interaction is an important interaction for HIV replication and AIDS progression.


APPROACH

- Nef catalytic function has yet to be fully elucidated.
- A different approach that couples Nef to the activation of Hck.
- These compounds represent valuable chemical probes for Nef-dependent HIV-1 replication in vitro.

PURPOSE

• Inhibiting the function of the Nef protein and other HIV accessory factors and their interaction with host cell target proteins may accelerate the discovery of new anti-HIV agents.

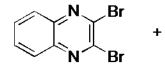
2-sulfonamido-3-arylaminequinoxalines

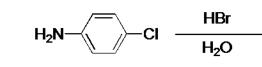
GOALS

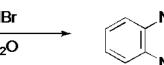
1. Synthesis of one or more derivatives that will inhibit the interaction of Nef and Hck (2-sulfonamido-3-arylaminequinoxalines)

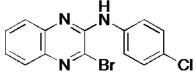
-Organic synthesis

-Purification

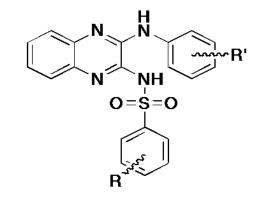

-Column Chromatography


-NMR


-LC-ESI-MS


2. Test the chemical(s) for inhibitory activities

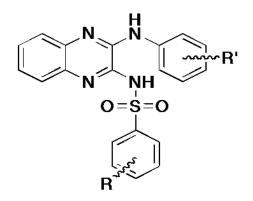
3-Bromo-N-(4-chlorophenyl)quinoxalin-2-amine



2,3-Dibromoquinoxaline

4-Chloroaniline

3-Bromo-N-(4-chlorophenyl)quinoxalin-2-amine



2-sulfonamido-3-arylaminequinoxalines

SULFONAMIDE

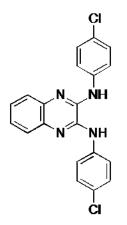
<u>First trial</u>

- 0.001 mmole
- 2,3-Dibromoquinoxaline (288 mg)
- *p*-Chloroaniline (127 mg)
- Hydrobromic acid (0.113 mL)
- Water (10 mL)

2-sulfonamido-3-arylaminequinoxalines

Terreneties (1) Colored (1) Co

• Extraction- 20 mL of NaOH (Sodium hydroxide) and 20 mL of CH₂Cl₂ (Dichloromethane).

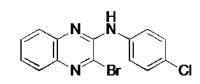

RESULTS

• Disubstituted product obtained.

• Refluxed -For a total of 9 hours.

SULFONAMIDE

• 19% Product and 81% starting material

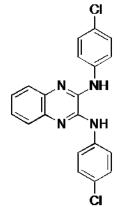


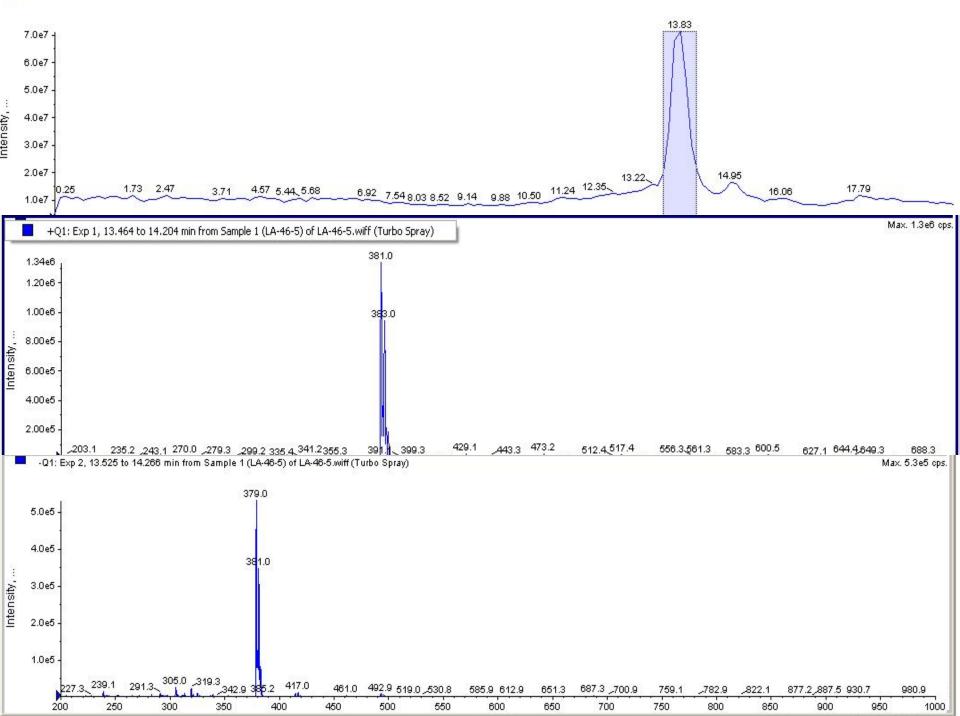
N², N³-bis(4-chlorophenyl)quinoxaline-2, 3-diamine

SULFONAMIDE

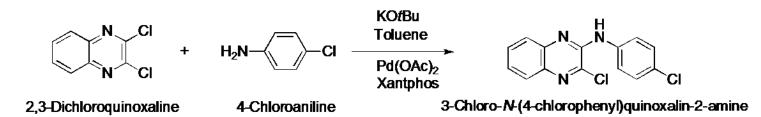
Second trial

- o 0.0005 mmole
- 2,3-dibromoquinoxaline (144 mg)
- *p*-Chloroaniline (63.5 mg)
- Hydrobromic acid (0.565 mL)
- Water (5 mL)



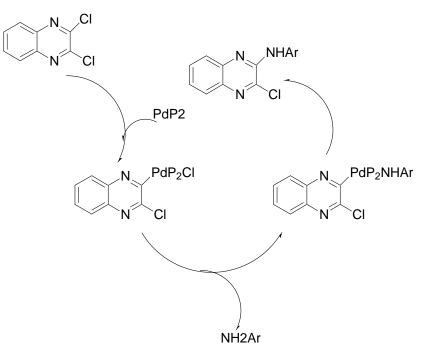

3-Bromo-N-(4-chlorophenyl)quinoxalin-2-amine

SULFONAMIDE


• Refluxed - For a total of 20 hours.

- Extraction 20 mL of NaOH (Sodium hydroxide) and 20 mL of CH_2Cl_2 (Dichloromethane).
- Temperature was monitored, 88 °C 90 °C RESULTS
- Disubstituted product obtained.
- 36% Product and 64% starting material

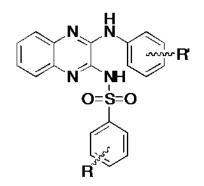
0.001 mmole



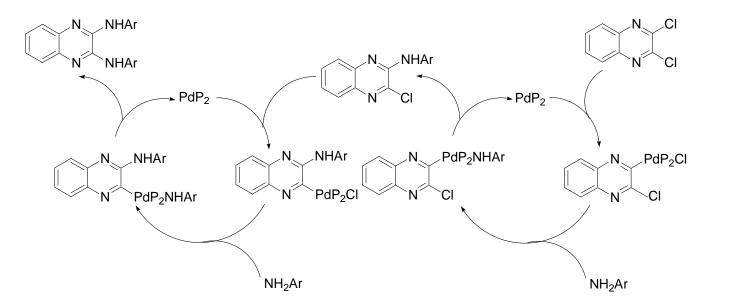
Reagents	Structure	Purpose
KO <i>t</i> Bu (Potassium tert- butoxide)	O- K+	oUsed to deprotonate amine
Toluene	toluene	oSolvent
Pd(OAc) ₂ (Palladium(II) acetate)	O ⁻ Pd ⁺⁺ -O	•Catalyst
Xantphos (Phosphorous Ligand)	Ph ₂ P PPh ₂	•Trapped palladium catalyst inserted into C- halogen bond.

Third trial

- o 0.001 mmole
- 2,3-dichloroquinoxaline (144 mg)
- *p*-Chloroaniline (63.5 mg)
- KOtBu Potassium *tert*-butoxide (1.2 equivalents)
- Toluene Solvent (15 mL)
- Pd(OAc)₂ -Palladium(II) acetate (5 molar %)
- Xantphos Phosphorous ligand (7.5 molar %)


SULFONAMIDE GROUP

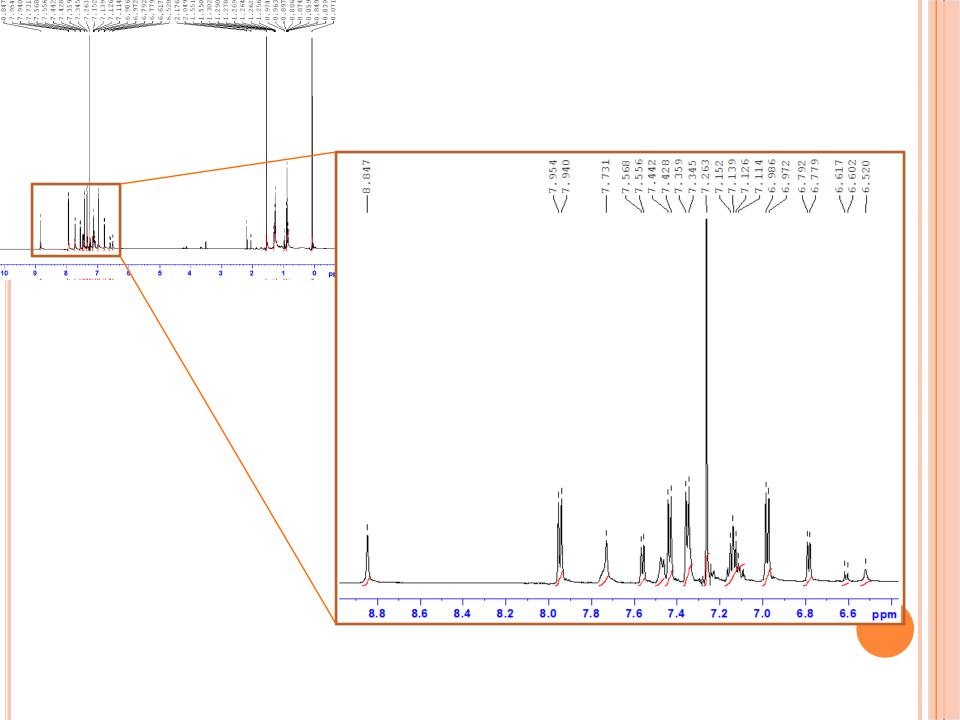
• Cesium Carbonate - Cs_2CO_3 (1.2 equivalents)

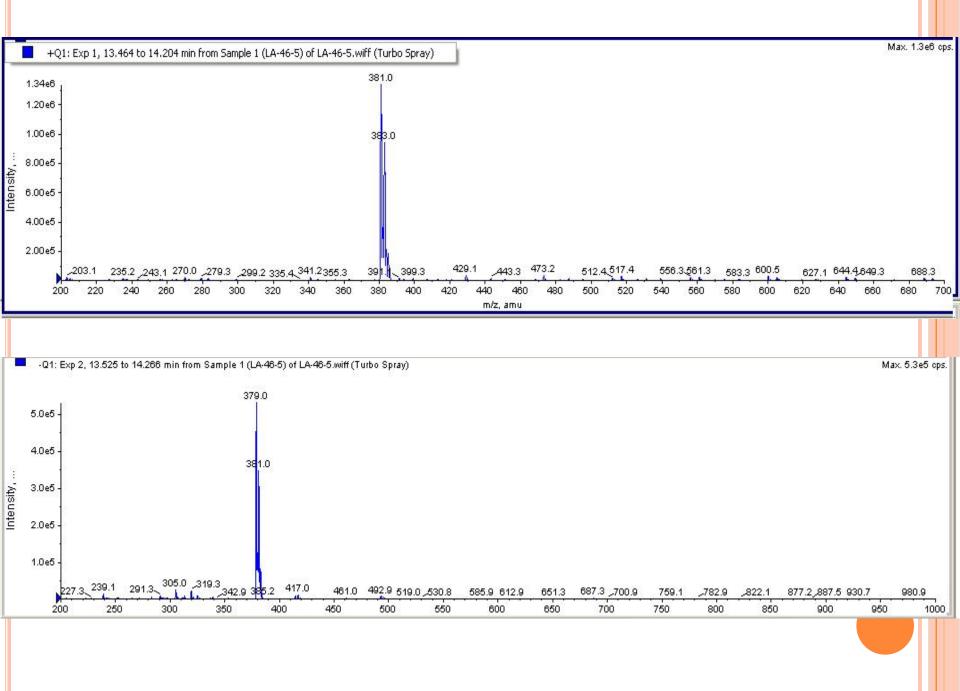

• DMF anhydrous - Dimethylformamide

 \circ Reflux under N₂ atmosphere

2-sulfonamido-3-arylaminequinoxalines

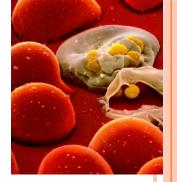
Palladium Catalysis

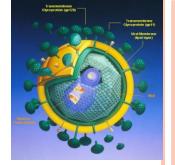




- Refluxed For a total of 22 hours.
- Extraction

15 mL of NH₄Cl (Ammonium chloride)
20 mL of CH₂Cl₂ (Dichloromethane)
10 mL of water
25 mL of saturated aqueous NaCl (Sodium chloride)


- Dried with magnesium sulfate for 1 hour. RESULTS
- Disubstituted product obtained.



ISOLATION

- Flash Column Chromatography
- NMR (Nuclear Magnetic Resonance)
- HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry)
- Characterization
 - 35 mg of isolated product
 - melting point: 225 °C 235 °C

TESTING

• Time didn't allow

Future Plans

Test the compound on Nef protein, Hck protein and Nef:Hck interaction through highthroughput biochemical and high information content cell-based screening assays.

Acknowledgements

- MARC
- BBSI
- University of Pittsburgh
- Duquesne University
- Billy Day, Ph.D.
- Vasiliy Korotchenko, Ph.D.
- NIH

ANY QUESTIONS ????

